KAW LAKE WATER SUPPLY STUDY

BARTLESVILLE WATER RESOURCES CONNECTED/CREATIVE

COMMITTEE

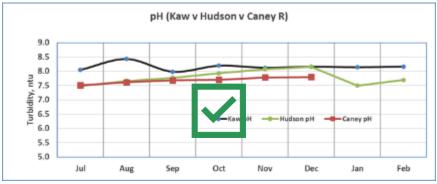
DECEMBER 19, 2024

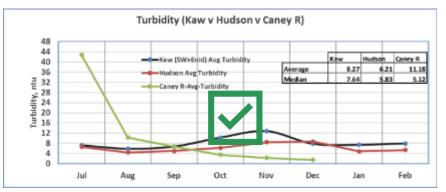
STUDY SCOPE AND OBJECTIVES

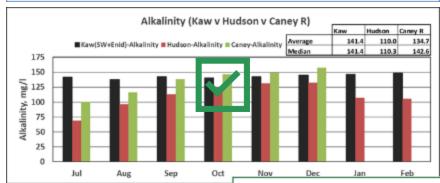
Scope and Objectives are to develop:

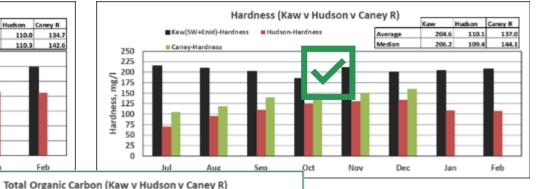
- Infrastructure options to convey Kaw Lake water to Bartlesville's Hudson Lake
- Construction and operational cost estimates

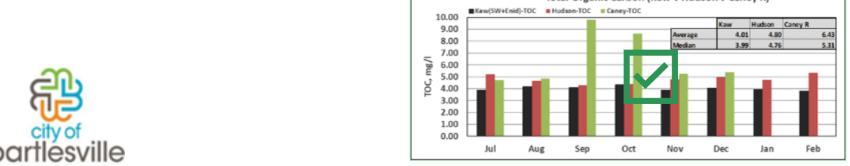
KAW LAKE WATER QUALITY

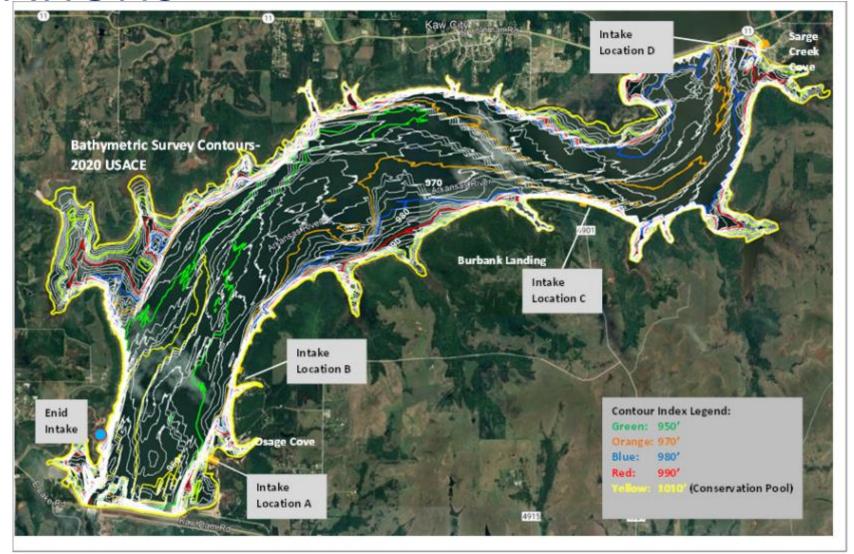

Data Sources:


- Oklahoma Water Resources Board (OWRB)
- Oklahoma Department of Environmental Quality (ODEQ)
- US Geological Survey (USGS)
- US Army Corps of Engineers (USACE)
- Kaw Nation Environmental Department
- City of Stillwater
- City of Enid
- City of Ponca City





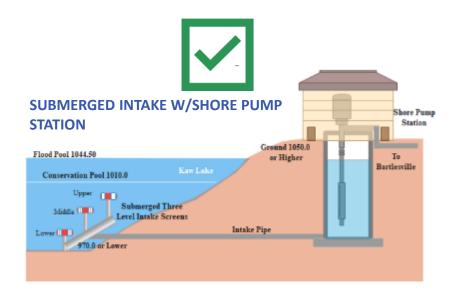

CONVENTIONAL WATER QUALITY 🔽 **PARAMETERS**

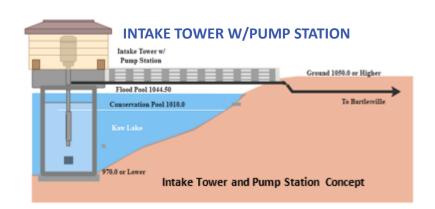

OTHER POLLUTANTS OF CONCERN

- As to the presence of other pollutants (PFAS, CECs, etc.) of concern, very limited data was available for this study.
- Kaw Lake drainage basin is large extending from Oklahoma, to Kansas, Colorado, and a small portion of New Mexico with well established aerospace, military, and other industrial complexes.
- If Bartlesville decides to pursue the Kaw Lake supply, we recommend Bartlesville to include more detailed evaluation for these pollutants including sampling from Kaw Lake.

KAW LAKE POTENTIAL INTAKE LOCATIONS

STILLWATER AND ENID INTAKES

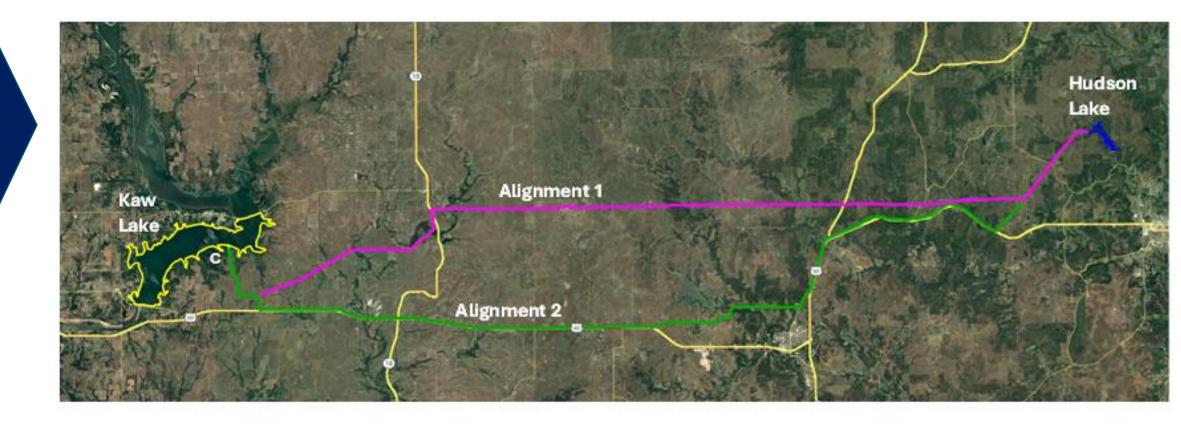




INTAKE TYPES

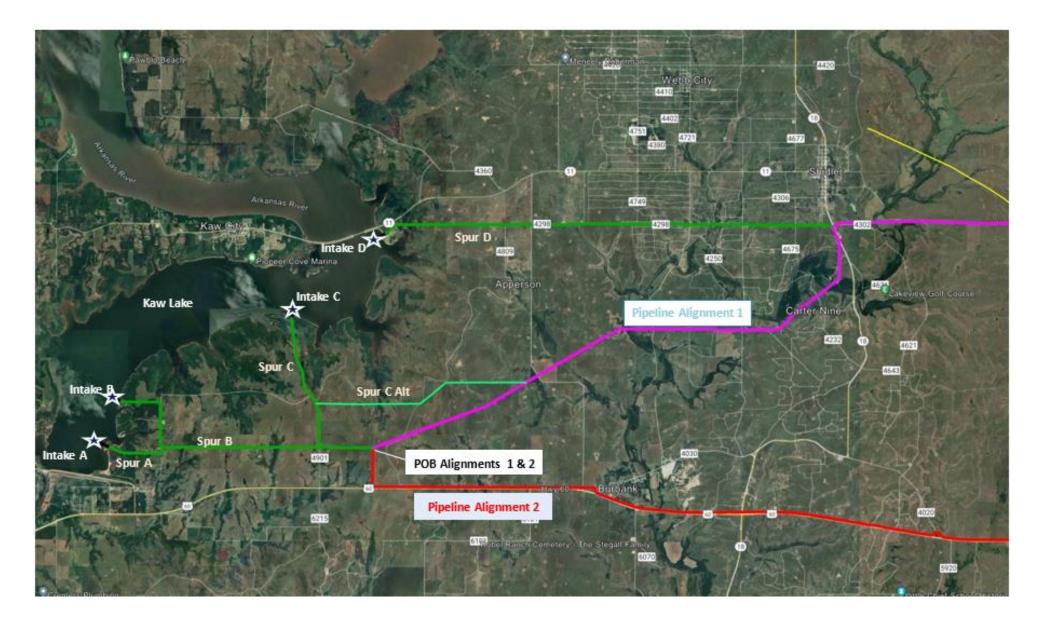
PERMIT REQUIREMENTS

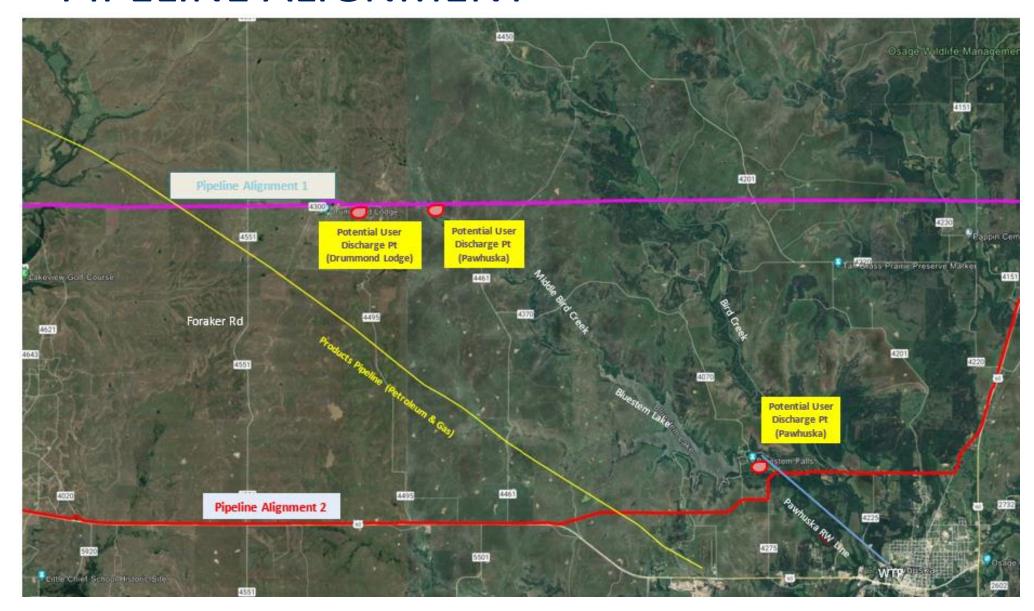
- Federal
 - Section 401, Section 404, Section 408, and Section 10 permits.
- State
 - Water Right Permit from OWRB
 - Permit to Construct from ODEQ
- Tribal Nation
 - Potential Water Rights

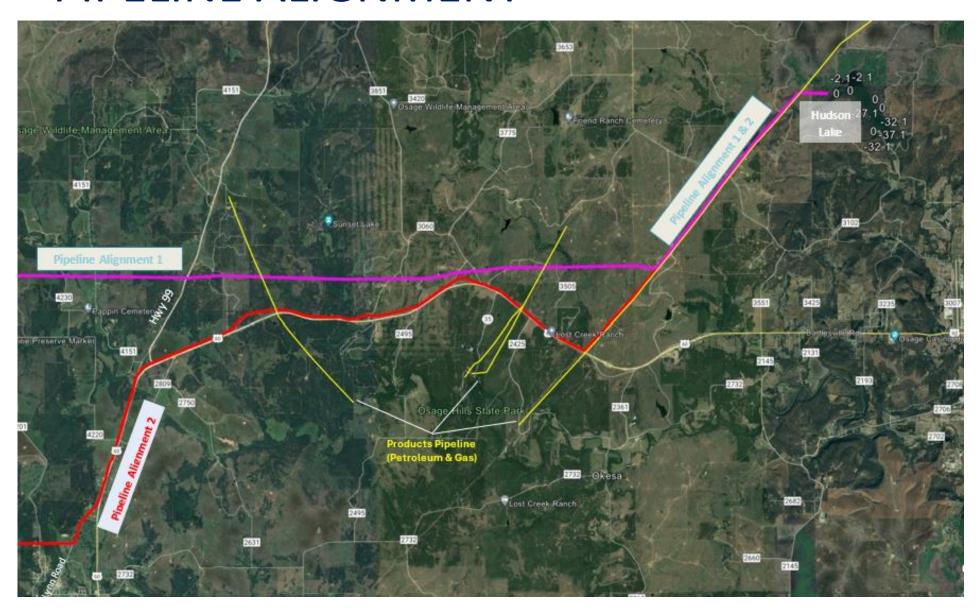


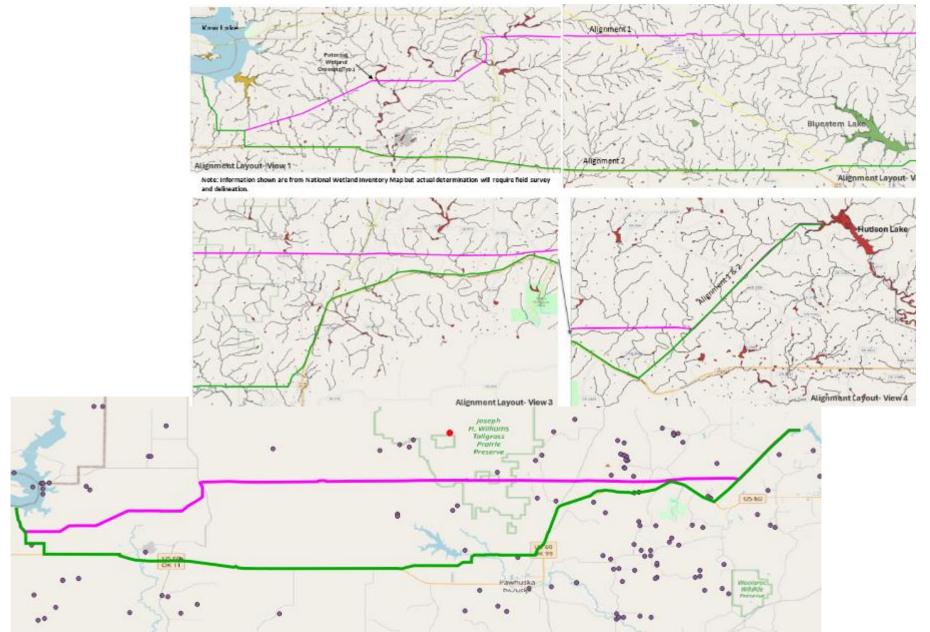
Considerations

- Alignment length, hydraulics and line access.
- Highway, roadway, creeks, streams and petroleum pipeline crossings.
- Potential wetlands and environmentally sensitive areas.
- Initial environmental investigations.
- Potential for wholesale customer connections.
- Overall constructability and cost.









PIPELINE ALIGNMENT-ENVIRONMENTAL

PIPELINE ALIGNMENT-EXISTING WATER SYSTEMS

Water System Name	Population Served	Avg. Demand (MGD)*	Source Water
OSAGE CO RWD			
#21	1575	0.158	LAKE CHARLOTTE
SHIDLER	404	0.040	RWD#21
OSAGE CO RWS			Ponca City &
& SWMD #3	867	0.087	Pawhuska
GRAYHORSE			
RWD	100	0.010	Fairfax
FAIRFAX	1655	0.166	Fairfax Lake & Well 1
			Lake/Clear Creek
PAWHUSKA	4060	0.406	Intake/Pawhuska Lake
OSAGE CO RWD			
# 5	561	0.056	Barnsdall

* Demand estimate assumes DEQ guideline of 100 GPCD

PERMIT REQUIREMENTS (PIPELINE)

- Federal
 - Section 401 and Section 404- depending on potential wetland crossings.
- State
 - Permit to Construct from ODEQ.
- Tribal Nation
 - Osage Mineral Council- Subsurface Mineral Rights.

CONCEPTUAL COST ESTIMATES

- Kaw Lake Storage Fee.
- OWRB Water Use (Water Right) Permit Fee.
- Osage Mineral Council
- Infrastructures:
 - Intake and Pump Station.
 - Pipeline Conveyance.

KAW LAKE STORAGE FEE

- For 14 MGD, 15,638 acre-feet, Storage Fee =\$16,009,089*
- For 18 MGD, 20,164 acre-feet, Storage Fee =\$20,642,491*
- For 22 MGD, 24,644 acre-feet, Storage Fee =\$25,228,802*

*Plus, annual maintenance cost share as determined by USACE

OSAGE MINERAL COUNCIL

• To Be Determined.

INTAKE AND PUMP STATION

		Intake Types				
	Submerged	Free Standing	ree Standing			
	Intake with	Intake with	Intake Combined			
	Onshore Pump	Onshore Pump	with Pump			
	Station (Type 1)	Station (Type 2)	Station (Type 3)			
Submerged Screen Intake	\$6,480,000	N/A	N/A			
Intake Tower & Piping	N/A	\$9,458,000	\$12,499,000			
Tunnel Intake Pipe	\$3,376,000	\$3,088,000	N/A			
Access Bridge	N/A	N/A	\$6,016,000			
Onshore Pump Station	\$34,708,000	\$39,088,000	N/A			
Offshore Pump Station	N/A	N/A	\$29,720,000			
Other Costs ²	\$7,340,000	\$8,401,000	\$7,891,000			
Total Estimate of Probable Cost ¹	\$51,904,000	\$60,035,000	\$56,126,000			

Note: ¹ Includes 35% Contingency, 2024 Cost Assumptions

² Other Costs include engineering/survey/permits

PIPELINE CONVEYANCE

	Alignm	nent 1	Alignment 2		
	48.7 N	Miles	52.9 Miles		
	14 MGD or 18		14 MGD or 18		
	MGD	22 MGD	MGD	22 MGD	
Pipeline	\$162,346,000	\$173,692,700	\$179,206,350	\$193,935,000	
Breakout or One Way Tank 1	\$3,656,300	\$4,687,500	\$4,743,750	\$4,743,750	
Other Costs:					
Environmental	\$622,300	\$622,300	\$663,000	\$663,000	
Survey	\$345,600	\$345,600	\$426,000	\$426,000	
Easements	\$2,656,300	\$2,656,300	\$2,885,400	\$2,885,400	
Engineering	\$19,920,200	\$21,405,600	\$22,074,000	\$23,841,400	
Permits	\$480,000	\$480,000	\$500,000	\$500,000	
Total Estimate of Probable Co	\$190,027,000	\$203,890,000	\$210,499,000	\$226,995,000	

Note: 1 Includes 30% Contingency, 2024 Cost Assumptions

² Other Costs include engineering/survey/permits

TOTAL PROJECT COST

(SECURE WATER RIGHTS, PERMITS, DESIGN AND CONSTRUCTION)

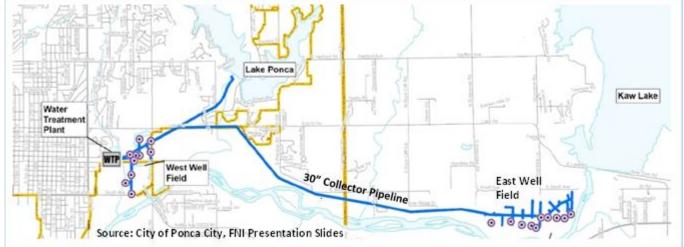
	Alignment 1 (Intake Location C)			Alignment 2 (Intake Location C)		
	48.7 Miles			52.9 Miles		
	14 MGD	18 MGD	22 MGD	14 MGD	18 MGD	22 MGD
Kaw Water Storage Fee (USACE)*	\$16,009,089	\$20,642,491	\$25,228,802	\$16,009,089	\$20,642,491	\$25,228,802
Submerged Intake Screen & Shore PS	\$46,498,000	\$49,074,000	\$51,904,000	\$46,498,000	\$49,074,000	\$51,904,000
Pipeline Conveyance	\$190,027,000	\$190,027,000	\$203,890,000	\$210,499,000	\$210,499,000	\$226,995,000
Other Costs						
Osage Mineral Council	TBD	TBD	TBD	TBD	TBD	TBD
OWRB Water Rights	TBD	TBD	TBD	TBD	TBD	TBD
Total Estimate of Probable Cost ¹	\$252,534,089	\$259,743,491	\$281,022,802	\$273,006,089	\$280,215,491	\$304,127,802

Note: * Plus, annual maintenance cost share as determined by USACE

ANNUAL OPERATIONAL COST

(IN-SERVICE OR IN-STANDBY MODE)

	ANNUAL OPERATION AND MAINTENANCE (O&M) COST SUMMARY					
	Alignment 1 (Intake Location C)			Alignment 2 (Intake Location C)		
	48.7 Miles			52.9 Miles		
	14 MGD		14 MGD			
KAW SUPPLY (IN-SERVICE) ^a						
Pipeline and Breakout/One-way Tank	\$43,000	\$43,000	\$43,000	\$50,300	\$50,300	\$50,300
Intake and Pump Station	\$1,362,900	\$2,041,200	\$2,137,400	\$975,600	\$1,943,800	\$2,234,900
Total (System In-Service)	\$1,405,900	\$2,084,200	\$2,180,400	\$1,025,900	\$1,994,100	\$2,285,200
KAW SUPPLY (NOT IN SERVICE) ^b						
Pipeline and Breakout/One-way Tank	\$43,000	\$43,000	\$43,000	\$50,300	\$50,300	\$50,300
Intake and Pump Station	\$19,300	\$25,700	\$28,900	\$16,200	\$25,700	\$28,900
Total (System Not In Service)	\$62,300	\$68,700	\$71,900	\$66,500	\$76,000	\$79,200



DISCUSSIONS & QA

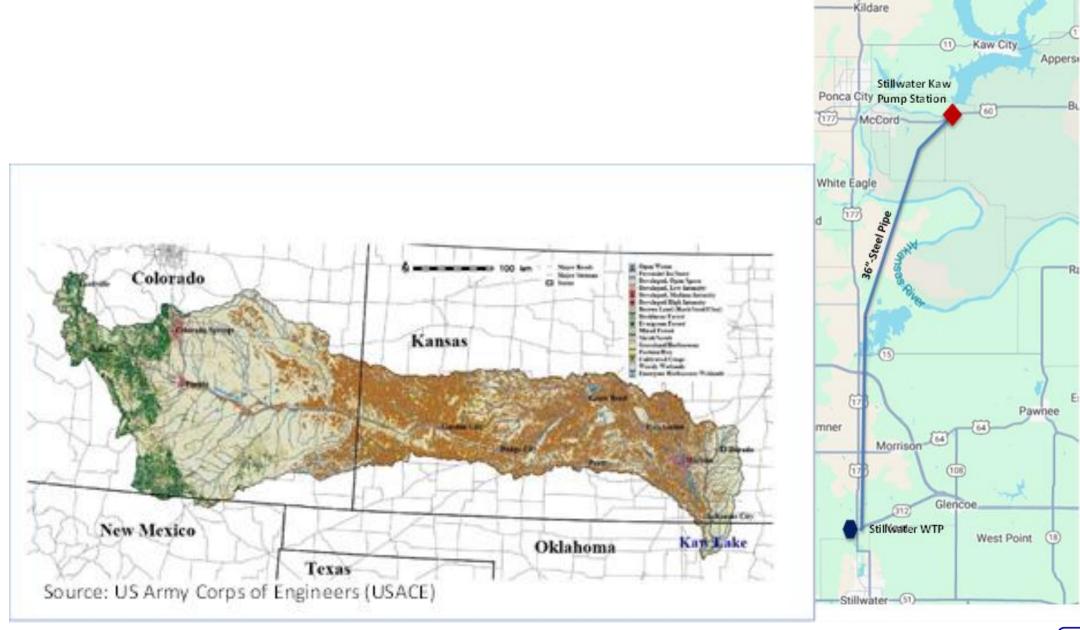


Table 1-2 Kaw Lake Physical and Flow Characteristics

Parameter	Units
Lake Elevation (Conservation Pool)	1,010.0 ft. NGVD
Lake Surface Area (Conservation Pool)	14,260 ac
Lake Volume (Conservation Pool)	344,043 ac-ft
Total Drainage Area (contributing)	38,771 <u>mi²</u>
Mean Depth	24.1 ft.
Maximum Depth (Conservation Pool)	79 ft.
Shoreline Length	116.4 mi
Annual Inflow, Average 1922 – 2021 [Water Years]	2,047,370 ac-ft
Annual Inflow, 2021 [Calendar Year]	2,071,041 ac-ft
Hydraulic Residence Time, 2021 [Calendar Year]	70.38 d
Source: US Army Corps of Engineers (USACE)	

Table 1-3 Kaw Lake Historical Siltation Summary

Survey Period	Storage @ Below Conservation Pool EL 1010.0' (acre-feet)	% Reduction in Storage Since 1975	Surface Area (acres)		
1975	431,120	0.0%	16,890.0		
1986	406,540	6.0%	16,750.0		
1995	382,623	12.7%	16,165.0		
2010	382,818	12.6%	15,700.0		
2015	362,511	18.9%	15,056.0		
2020	344,044	25.3%	14,257.6		
Source: US Army Corps of Engineers (USACE) Bathymetric Survey					

